metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2-Amino-3,5-dimethylbenzenesulfonato- κN)bis(triphenvlphosphine- κP)silver(I) acetonitrile solvate

Jia-Jun Han and Ning Li*

Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China Correspondence e-mail: lininghit@yahoo.com.cn

Received 1 October 2007; accepted 1 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 19.0.

The title compound, $[Ag(C_8H_{10}NO_3S)(C_{18}H_{15}P)_2]$ ·CH₃CN, has a mononuclear structure, where the Ag^I cation is threecoordinated by two triphenylphosphine ligands and one N atom from the 2-amino-3,5-dimethylbenzenesulfonate anion in a distorted trigonal-planar AgP₂N arrangement. A network of N-H···O hydrogen bonds helps to consolidate the packing.

Related literature

For studies on related silver sulfonates, see: Han & Li, (2007a,b). For a review on the structural chemistry and properties of sulfonate complexes, see: Cote & Shimizu (2003).

Experimental

 C_2H_3N

Crystal data [Ag(C₈H₁₀NO₃S)(C₁₈H₁₅P)₂]--

 $M_r = 873.69$ Monoclinic, $P2_1/n$

a = 13.782 (3) Å
b = 12.252 (3) Å
c = 25.243 (5) Å
$\beta = 94.32 \ (3)^{\circ}$
$V = 4250.5 (15) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPID	39847 measured reflections
diffractometer	9612 independent reflections
Absorption correction: multi-scan	7595 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.047$
$T_{\min} = 0.841, \ T_{\max} = 0.892$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F²) = 0.092 H atoms treated by a mixture of independent and constrained S = 0.84refinement $\Delta \rho_{\rm max} = 0.45$ e Å⁻³ 9612 reflections $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$ 506 parameters 3 restraints

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.64 \text{ mm}^-$

T = 293 (2) K $0.26 \times 0.21 \times 0.18 \text{ mm}$

Table 1

Selected geometric parameters (Å, °).

Ag1-N1 Ag1-P2	2.393 (2) 2.4955 (9)	Ag1-P1	2.5005 (8)
N1-Ag1-P2 N1-Ag1-P1	121.82 (6) 112.50 (6)	P2-Ag1-P1	122.09 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N1 - H1A \cdots O1^{i} \\ N1 - H1B \cdots O3 \end{array}}$	0.895 (16) 0.821 (17)	2.23 (2) 2.21 (2)	3.026 (3) 2.887 (3)	147.8 (18) 139 (2)
	3 1	1		

Symmetry code: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank Harbin Institute of Technology for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2567).

References

- Cote, A. P. & Shimizu, K. H. (2003). Coord. Chem. Rev. 245, 49-64. Han, J.-J. & Li, N. (2007a). Acta Cryst. E63, m1622-m1623. Han, J.-J. & Li, N. (2007b). Acta Cryst. E63, m1635. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. (1998). Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc. Madison Wisconsin USA. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.

Acta Cryst. (2007). E63, m2650 [doi:10.1107/S1600536807048076]

$(2-Amino-3,5-dimethylbenzenesulfonato-{\it KN}) bis (triphenylphosphine-{\it KP}) silver (I) \ acetonitrile \ solvate$

J.-J. Han and N. Li

Comment

Cote & Shimizu have reviewed recent progress in the solid-state coordination and structural chemistry of sulfonates complexes as well as their properties in the gas sorption (Cote & Shimizu, 2003). However, sulfonate are generally perceived as weaker ligands regarding their coordinating ability (Han & Li, 2007*a*). Herein, we present the synthesis and structure of the title compound, (I), $[Ag(tpp)_2(L)]$ CNCH₃, where tpp = triphenylphosphine and HL= 2-amino-3,5-dimethylbenzenes-ulfonic acid.

The Ag^{I} cation is three-coordinated by two P atoms from two triphenylphosphine ligands and one N atom from the *L* anion in a distorted trigonal-planar $AgP_{2}N$ arrangement (Fig. 1, Table 1). The Ag—N (sulfonate) distance in (I) is similar to the equivalent value in a related compound (Han & Li, 2007*b*). Finally, the molecules are linked through N—H…O hydrogen bonds (Table 2), which help to consolidate the structure of (I).

Experimental

An aqueous solution (10 ml) of 2-amino-3,-5-dimethylbenzenesulfonic acid (0.5 mmol) was added to solid Ag_2CO_3 (0.25 mmol) and stirred for several minutes until no further CO_2 was given off; triphenylphosphine (0.5 mmol) in acetonitrile (7 ml) was then added and a solution was formed. Colourless blocks of (I) were obtained by evaporation of the solution for several days at room temperature.

Refinement

H atoms bonded to N atom were located in a difference map and refined freely, with $U_{iso}(H) = 1.2U_{eq}(N)$. H atoms bonded to C atom were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level (H atoms omitted for clarity).

(2-Amino-3,5-dimethylbenzenesulfonato-κN)bis(triphenylphosphine-κP)silver(I) acetonitrile solvate

Crystal data

 $[Ag(C_8H_{10}NO_3S)(C_{18}H_{15}P)_2] \cdot C_2H_3N$ $M_r = 873.69$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.782 (3) Å b = 12.252 (3) Å c = 25.243 (5) Å $\beta = 94.32$ (3)° V = 4250.5 (15) Å³ Z = 4 $F_{000} = 1800$ $D_x = 1.365 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 28308 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 293 (2) KBlock, colorless $0.26 \times 0.21 \times 0.18 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	9612 independent reflections
Radiation source: rotating anode	7595 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.841, T_{\max} = 0.892$	<i>l</i> = −32→32
39847 measured reflections	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: difmap and geom H atoms treated by a mixture of $R[F^2 > 2\sigma(F^2)] = 0.034$ independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0487P)^2 + 4.2132P]$ $wR(F^2) = 0.092$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.003$ S = 0.84 $\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$ 9612 reflections $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$ 506 parameters 3 restraints Extinction correction: none

Primary atom site location: structure-invariant direct methods

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.817193 (13)	1.130397 (16)	0.175155 (7)	0.03824 (7)
C1	0.68522 (18)	0.9235 (2)	0.09214 (9)	0.0382 (5)
C2	0.76198 (19)	0.8582 (2)	0.11134 (10)	0.0450 (6)
H2	0.8141	0.8892	0.1315	0.054*
C3	0.7623 (2)	0.7471 (2)	0.10091 (12)	0.0554 (7)
H3	0.8141	0.7040	0.1141	0.067*
C4	0.6855 (3)	0.7010 (2)	0.07095 (12)	0.0610 (8)
H4	0.6863	0.6268	0.0634	0.073*
C5	0.6076 (3)	0.7635 (2)	0.05212 (11)	0.0599 (8)
Н5	0.5557	0.7315	0.0322	0.072*
C6	0.6066 (2)	0.8745 (2)	0.06290 (11)	0.0510 (7)
H6	0.5534	0.9165	0.0506	0.061*
C7	0.56283 (17)	1.0923 (2)	0.12487 (9)	0.0362 (5)
C8	0.5409 (2)	1.0592 (2)	0.17539 (10)	0.0462 (6)
H8	0.5895	1.0306	0.1990	0.055*
С9	0.4474 (2)	1.0688 (3)	0.19044 (12)	0.0604 (8)
H9	0.4328	1.0458	0.2240	0.073*
C10	0.3754 (2)	1.1122 (3)	0.15611 (14)	0.0712 (10)
H10	0.3125	1.1190	0.1667	0.085*
C11	0.3960 (2)	1.1453 (3)	0.10667 (15)	0.0717 (10)
H11	0.3470	1.1748	0.0836	0.086*
C12	0.4896 (2)	1.1353 (3)	0.09050 (12)	0.0549 (7)
H12	0.5031	1.1575	0.0566	0.066*
C13	0.69171 (17)	1.1375 (2)	0.04289 (10)	0.0402 (5)
C14	0.6807 (2)	1.0852 (3)	-0.00577 (11)	0.0581 (7)
H14	0.6684	1.0105	-0.0072	0.070*
C15	0.6881 (3)	1.1437 (3)	-0.05288 (12)	0.0718 (10)
H15	0.6802	1.1078	-0.0854	0.086*
C16	0.7066 (2)	1.2523 (3)	-0.05154 (13)	0.0679 (9)
H16	0.7116	1.2906	-0.0830	0.082*
C17	0.7178 (3)	1.3057 (3)	-0.00382 (14)	0.0714 (9)
H17	0.7296	1.3804	-0.0030	0.086*
C18	0.7116 (2)	1.2486 (2)	0.04340 (12)	0.0547 (7)

H18	0.7208	1.2852	0.0757	0.066*
C19	1.02417 (18)	1.1280 (2)	0.09599 (10)	0.0417 (5)
C20	0.9506 (2)	1.1355 (4)	0.05733 (12)	0.0743 (11)
H20	0.8870	1.1249	0.0662	0.089*
C21	0.9671 (3)	1.1584 (5)	0.00530 (13)	0.1017 (17)
H21	0.9150	1.1630	-0.0203	0.122*
C22	1.0593 (2)	1.1744 (4)	-0.00861 (12)	0.0747 (10)
H22	1.0708	1.1911	-0.0435	0.090*
C23	1.1335 (3)	1.1656 (4)	0.02877 (14)	0.0954 (15)
H23	1.1970	1.1754	0.0195	0.115*
C24	1.1168 (2)	1.1423 (4)	0.08089 (13)	0.0902 (15)
H24	1.1693	1.1361	0.1061	0.108*
C25	1.01384 (17)	0.9537 (2)	0.17303 (10)	0.0408 (5)
C26	0.9726 (2)	0.9045 (3)	0.21528 (12)	0.0575 (7)
H26	0.9434	0.9473	0.2400	0.069*
C27	0.9744 (2)	0.7918 (3)	0.22113 (15)	0.0693 (9)
H27	0.9473	0.7598	0.2500	0.083*
C28	1.0161 (2)	0.7276 (3)	0.18456 (14)	0.0668 (9)
H28	1.0154	0.6520	0.1879	0.080*
C29	1.0590 (3)	0.7757 (3)	0.14282 (13)	0.0670 (9)
H29	1.0886	0.7325	0.1184	0.080*
C30	1.0580 (2)	0.8881 (2)	0.13729 (11)	0.0538 (7)
H30	1.0875	0.9200	0.1092	0.065*
C31	1.09295 (18)	1.1680 (2)	0.20333 (10)	0.0444 (6)
C32	1.1509 (2)	1.1166 (3)	0.24300 (11)	0.0517 (7)
H32	1.1424	1.0428	0.2498	0.062*
C33	1.2219 (2)	1.1761 (3)	0.27261 (13)	0.0681 (9)
H33	1.2598	1.1420	0.2999	0.082*
C34	1.2366 (3)	1.2835 (3)	0.26212 (15)	0.0785 (11)
H34	1.2856	1.3218	0.2815	0.094*
C35	1.1795 (3)	1.3353 (3)	0.22308 (17)	0.0797 (11)
H35	1.1890	1.4090	0.2162	0.096*
C36	1.1079 (2)	1.2776 (3)	0.19408 (14)	0.0671 (9)
H36	1.0690	1.3132	0.1678	0.081*
C37	0.83280 (18)	1.00119 (18)	0.32193 (9)	0.0360 (5)
C38	0.9007 (2)	0.9489 (2)	0.35648 (11)	0.0507 (7)
H38	0.8870	0.8794	0.3687	0.061*
C39	0.9880 (2)	0.9975 (3)	0.37310 (13)	0.0625 (8)
C40	1.0055 (2)	1.1013 (2)	0.35416 (12)	0.0543 (7)
H40	1.0642	1.1349	0.3649	0.065*
C41	0.93999 (19)	1.1572 (2)	0.32017 (10)	0.0403 (5)
C42	0.85182 (17)	1.10647 (18)	0.30314 (8)	0.0333 (5)
C43	1.0621 (3)	0.9410 (4)	0.4119 (2)	0.120 (2)
H43A	1.0287	0.9031	0.4384	0.180*
H43B	1.1049	0.9946	0.4288	0.180*
H43C	1.0994	0.8899	0.3930	0.180*
C44	0.9608 (2)	1.2719 (2)	0.30369 (12)	0.0501 (6)
H44A	0.9456	1.2795	0.2661	0.075*
H44B	1.0283	1.2880	0.3121	0.075*

H44C	0.9216	1.3216	0.3223	0.075*
C45	1.0471 (7)	1.4892 (5)	0.0828 (3)	0.134 (2)
C46	0.9466 (5)	1.4605 (6)	0.0753 (2)	0.152 (3)
H46A	0.9111	1.5189	0.0575	0.227*
H46B	0.9215	1.4477	0.1092	0.227*
H46C	0.9397	1.3954	0.0541	0.227*
N1	0.78530 (16)	1.15978 (16)	0.26594 (8)	0.0348 (4)
N2	1.1273 (6)	1.5132 (6)	0.0876 (4)	0.204 (3)
O1	0.73360 (15)	0.90495 (15)	0.24511 (7)	0.0498 (4)
O2	0.71669 (16)	0.83858 (15)	0.33439 (8)	0.0563 (5)
O3	0.64498 (14)	1.01177 (15)	0.30577 (8)	0.0535 (5)
S1	0.72303 (5)	0.93324 (5)	0.30021 (2)	0.03896 (14)
P1	0.99383 (4)	1.10000 (6)	0.16382 (2)	0.03733 (14)
P2	0.68730 (4)	1.06931 (5)	0.10741 (2)	0.03495 (13)
H1B	0.7286 (14)	1.142 (2)	0.2687 (11)	0.044 (8)*
H1A	0.8049 (13)	1.2294 (15)	0.2671 (11)	0.053 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.03310 (10)	0.04632 (12)	0.03491 (10)	0.00240 (8)	0.00002 (7)	-0.00437 (7)
C1	0.0399 (13)	0.0437 (13)	0.0314 (12)	-0.0014 (11)	0.0040 (9)	-0.0043 (9)
C2	0.0401 (14)	0.0495 (15)	0.0460 (14)	0.0029 (11)	0.0072 (11)	-0.0005 (11)
C3	0.0609 (19)	0.0484 (16)	0.0590 (17)	0.0126 (14)	0.0167 (14)	0.0079 (13)
C4	0.089 (2)	0.0398 (15)	0.0565 (17)	-0.0039 (16)	0.0201 (16)	-0.0014 (13)
C5	0.078 (2)	0.0503 (17)	0.0503 (16)	-0.0165 (16)	-0.0018 (15)	-0.0045 (13)
C6	0.0549 (17)	0.0496 (16)	0.0466 (15)	-0.0044 (13)	-0.0089 (12)	-0.0029 (12)
C7	0.0316 (12)	0.0376 (12)	0.0391 (13)	-0.0010 (9)	0.0013 (9)	-0.0069 (9)
C8	0.0476 (15)	0.0488 (15)	0.0422 (14)	0.0012 (12)	0.0039 (11)	-0.0049 (11)
С9	0.0576 (19)	0.073 (2)	0.0532 (17)	-0.0070 (16)	0.0186 (14)	-0.0091 (14)
C10	0.0382 (16)	0.098 (3)	0.079 (2)	-0.0005 (17)	0.0159 (15)	-0.0185 (19)
C11	0.0372 (16)	0.099 (3)	0.077 (2)	0.0131 (17)	-0.0027 (15)	0.0028 (19)
C12	0.0375 (14)	0.074 (2)	0.0520 (16)	0.0047 (14)	-0.0032 (12)	0.0066 (14)
C13	0.0315 (12)	0.0511 (15)	0.0376 (13)	-0.0001 (11)	0.0003 (9)	0.0004 (10)
C14	0.071 (2)	0.0616 (18)	0.0406 (15)	-0.0094 (16)	-0.0008 (13)	-0.0016 (13)
C15	0.084 (3)	0.094 (3)	0.0366 (16)	-0.006 (2)	0.0003 (15)	0.0019 (15)
C16	0.061 (2)	0.089 (3)	0.0532 (18)	0.0060 (18)	0.0019 (14)	0.0264 (17)
C17	0.083 (2)	0.057 (2)	0.075 (2)	0.0048 (17)	0.0060 (18)	0.0206 (17)
C18	0.0634 (19)	0.0510 (16)	0.0500 (16)	0.0028 (14)	0.0056 (13)	0.0025 (12)
C19	0.0322 (12)	0.0544 (15)	0.0388 (13)	0.0037 (11)	0.0040 (10)	0.0020 (11)
C20	0.0343 (15)	0.149 (4)	0.0397 (16)	0.0009 (18)	0.0041 (12)	0.0065 (18)
C21	0.050 (2)	0.216 (5)	0.0391 (17)	0.012 (3)	0.0029 (14)	0.014 (2)
C22	0.0552 (19)	0.130 (3)	0.0398 (16)	0.003 (2)	0.0096 (14)	0.0117 (18)
C23	0.0424 (18)	0.189 (5)	0.057 (2)	-0.014 (2)	0.0133 (15)	0.020 (2)
C24	0.0335 (16)	0.187 (5)	0.0500 (18)	-0.010 (2)	0.0003 (13)	0.027 (2)
C25	0.0310 (12)	0.0510 (15)	0.0395 (13)	0.0027 (11)	-0.0025 (9)	0.0018 (10)
C26	0.0514 (17)	0.0591 (18)	0.0637 (18)	0.0077 (14)	0.0170 (14)	0.0090 (14)
C27	0.061 (2)	0.062 (2)	0.086 (2)	0.0031 (16)	0.0159 (17)	0.0233 (17)

C28	0.063 (2)	0.0486 (18)	0.085 (2)	0.0063 (15)	-0.0188 (17)	0.0062 (16)
C29	0.083 (2)	0.062 (2)	0.0531 (18)	0.0226 (17)	-0.0129 (16)	-0.0089 (15)
C30	0.0612 (18)	0.0606 (18)	0.0391 (14)	0.0126 (14)	0.0018 (12)	-0.0013 (12)
C31	0.0325 (13)	0.0571 (16)	0.0434 (14)	-0.0031 (11)	0.0015 (10)	-0.0024 (11)
C32	0.0399 (15)	0.0653 (18)	0.0490 (15)	0.0026 (13)	-0.0029 (11)	-0.0071 (13)
C33	0.0458 (17)	0.094 (3)	0.062 (2)	0.0034 (17)	-0.0155 (14)	-0.0098 (18)
C34	0.055 (2)	0.091 (3)	0.087 (3)	-0.0170 (19)	-0.0126 (18)	-0.022 (2)
C35	0.068 (2)	0.068 (2)	0.100 (3)	-0.0246 (19)	-0.008 (2)	-0.001 (2)
C36	0.0587 (19)	0.065 (2)	0.075 (2)	-0.0126 (16)	-0.0134 (16)	0.0073 (16)
C37	0.0434 (13)	0.0307 (11)	0.0336 (12)	-0.0012 (10)	0.0013 (9)	-0.0005 (9)
C38	0.0621 (18)	0.0366 (14)	0.0516 (16)	-0.0045 (12)	-0.0089 (13)	0.0096 (11)
C39	0.0626 (19)	0.0511 (17)	0.070 (2)	-0.0022 (14)	-0.0220 (15)	0.0145 (14)
C40	0.0469 (16)	0.0496 (16)	0.0642 (18)	-0.0078 (13)	-0.0104 (13)	-0.0004 (13)
C41	0.0415 (14)	0.0373 (13)	0.0423 (13)	-0.0034 (10)	0.0047 (10)	-0.0016 (10)
C42	0.0402 (13)	0.0298 (11)	0.0299 (11)	-0.0006 (9)	0.0033 (9)	-0.0030 (8)
C43	0.103 (3)	0.089 (3)	0.157 (4)	-0.014 (3)	-0.073 (3)	0.048 (3)
C44	0.0466 (15)	0.0401 (14)	0.0638 (17)	-0.0095 (12)	0.0057 (13)	-0.0008 (12)
C45	0.183 (7)	0.083 (4)	0.144 (5)	0.005 (5)	0.062 (6)	0.005 (3)
C46	0.159 (6)	0.175 (7)	0.127 (5)	-0.013 (5)	0.054 (5)	-0.004 (4)
N1	0.0385 (12)	0.0310 (10)	0.0351 (10)	-0.0014 (9)	0.0034 (8)	0.0018 (8)
N2	0.206 (8)	0.140 (6)	0.274 (9)	-0.020 (6)	0.072 (7)	0.026 (5)
01	0.0611 (12)	0.0489 (11)	0.0392 (10)	-0.0095 (9)	0.0020 (8)	-0.0069 (8)
O2	0.0761 (14)	0.0386 (10)	0.0536 (11)	-0.0185 (10)	0.0004 (10)	0.0097 (8)
O3	0.0446 (11)	0.0458 (11)	0.0712 (13)	-0.0007 (9)	0.0112 (9)	-0.0014 (9)
S 1	0.0466 (3)	0.0311 (3)	0.0392 (3)	-0.0061 (2)	0.0031 (2)	-0.0005 (2)
P1	0.0284 (3)	0.0482 (4)	0.0352 (3)	0.0018 (3)	0.0009 (2)	0.0012 (3)
P2	0.0309 (3)	0.0406 (3)	0.0328 (3)	0.0005 (2)	-0.0012 (2)	-0.0036 (2)

Geometric parameters (Å, °)

Ag1—N1	2.393 (2)	C25—C30	1.383 (4)
Ag1—P2	2.4955 (9)	C25—P1	1.826 (3)
Ag1—P1	2.5005 (8)	C26—C27	1.388 (5)
C1—C2	1.385 (4)	C26—H26	0.9300
C1—C6	1.399 (4)	C27—C28	1.372 (5)
C1—P2	1.828 (3)	С27—Н27	0.9300
C2—C3	1.386 (4)	C28—C29	1.379 (5)
С2—Н2	0.9300	C28—H28	0.9300
C3—C4	1.374 (5)	C29—C30	1.385 (4)
С3—Н3	0.9300	С29—Н29	0.9300
C4—C5	1.374 (5)	С30—Н30	0.9300
C4—H4	0.9300	C31—C32	1.384 (4)
C5—C6	1.386 (4)	C31—C36	1.381 (4)
С5—Н5	0.9300	C31—P1	1.830 (3)
С6—Н6	0.9300	C32—C33	1.392 (4)
C7—C12	1.384 (4)	С32—Н32	0.9300
C7—C8	1.393 (3)	C33—C34	1.361 (5)
C7—P2	1.825 (2)	С33—Н33	0.9300
C8—C9	1.376 (4)	C34—C35	1.370 (5)

C8—H8	0.9300	C34—H34	0.9300
C9—C10	1.374 (5)	C35—C36	1.378 (4)
С9—Н9	0.9300	С35—Н35	0.9300
C10—C11	1.362 (5)	С36—Н36	0.9300
C10—H10	0.9300	C37—C38	1.387 (3)
C11—C12	1.388 (4)	C37—C42	1.406 (3)
C11—H11	0.9300	C37—S1	1.777 (2)
C12—H12	0.9300	C38—C39	1.379 (4)
C13—C14	1.384 (4)	C38—H38	0.9300
C13—C18	1.388 (4)	C39—C40	1.386 (4)
C13—P2	1.836 (3)	C39—C43	1.528 (4)
C14—C15	1.399 (4)	C40—C41	1.380 (4)
C14—H14	0.9300	C40—H40	0.9300
C15—C16	1.354 (5)	C41—C42	1.403 (3)
C15—H15	0.9300	C41—C44	1.499 (3)
C16—C17	1.369 (5)	C42—N1	1.421 (3)
C16—H16	0.9300	C43—H43A	0.9600
C17—C18	1.390 (4)	C43—H43B	0.9600
C17—H17	0.9300	C43—H43C	0.9600
C18—H18	0.9300	C44—H44A	0.9600
C19—C20	1.356 (4)	C44—H44B	0.9600
C19—C24	1.371 (4)	C44—H44C	0.9600
C19—P1	1.825 (3)	C45—N2	1.141 (10)
C20—C21	1.378 (4)	C45—C46	1.428 (9)
C20—H20	0.9300	C46—H46A	0.9600
C21—C22	1.358 (5)	C46—H46B	0.9600
C21—H21	0.9300	C46—H46C	0.9600
C22—C23	1.343 (5)	N1—H1B	0.821 (17)
С22—Н22	0.9300	N1—H1A	0.895 (16)
C23—C24	1.382 (5)	O1—S1	1.4513 (18)
C23—H23	0.9300	O2—S1	1.4522 (19)
C24—H24	0.9300	O3—S1	1.458 (2)
C25—C26	1.384 (4)		
N1—Ag1—P2	121.82 (6)	С29—С28—Н28	120.2
N1—Ag1—P1	112.50 (6)	C28—C29—C30	120.1 (3)
P2—Ag1—P1	122.09 (3)	С28—С29—Н29	120.0
C2—C1—C6	118.5 (2)	С30—С29—Н29	120.0
C2—C1—P2	119.46 (19)	C25—C30—C29	120.9 (3)
C6—C1—P2	122.0 (2)	С25—С30—Н30	119.6
C1—C2—C3	120.9 (3)	С29—С30—Н30	119.6
С1—С2—Н2	119.5	C32—C31—C36	118.6 (3)
С3—С2—Н2	119.5	C32—C31—P1	123.6 (2)
C4—C3—C2	119.6 (3)	C36—C31—P1	117.8 (2)
С4—С3—Н3	120.2	C31—C32—C33	119.6 (3)
С2—С3—Н3	120.2	С31—С32—Н32	120.2
C3—C4—C5	120.7 (3)	С33—С32—Н32	120.2
С3—С4—Н4	119.7	C34—C33—C32	120.7 (3)
С5—С4—Н4	119.7	С34—С33—Н33	119.6
C4—C5—C6	119.9 (3)	С32—С33—Н33	119.6

С4—С5—Н5	120.1	C33—C34—C35	120.2 (3)
С6—С5—Н5	120.1	С33—С34—Н34	119.9
C5—C6—C1	120.3 (3)	С35—С34—Н34	119.9
С5—С6—Н6	119.8	C36—C35—C34	119.6 (4)
С1—С6—Н6	119.8	С36—С35—Н35	120.2
C12—C7—C8	119.1 (2)	С34—С35—Н35	120.2
C12—C7—P2	124.2 (2)	C35—C36—C31	121.3 (3)
C8—C7—P2	116.68 (19)	С35—С36—Н36	119.4
C9—C8—C7	120.0 (3)	С31—С36—Н36	119.4
С9—С8—Н8	120.0	C38—C37—C42	120.1 (2)
С7—С8—Н8	120.0	C38—C37—S1	119.73 (19)
C8—C9—C10	120.4 (3)	C42—C37—S1	120.12 (18)
С8—С9—Н9	119.8	C39—C38—C37	121.6 (2)
С10—С9—Н9	119.8	С39—С38—Н38	119.2
C11—C10—C9	120.2 (3)	С37—С38—Н38	119.2
C11—C10—H10	119.9	C38—C39—C40	117.5 (3)
С9—С10—Н10	119.9	C38—C39—C43	121.7 (3)
C10-C11-C12	120.4 (3)	C40—C39—C43	120.8 (3)
C10-C11-H11	119.8	C41—C40—C39	123.2 (3)
C12—C11—H11	119.8	C41—C40—H40	118.4
C7—C12—C11	119.9 (3)	С39—С40—Н40	118.4
С7—С12—Н12	120.0	C40—C41—C42	118.8 (2)
C11—C12—H12	120.0	C40—C41—C44	120.6 (2)
C14—C13—C18	118.1 (3)	C42—C41—C44	120.6 (2)
C14—C13—P2	124.6 (2)	C37—C42—C41	118.8 (2)
C18—C13—P2	117.3 (2)	C37—C42—N1	121.2 (2)
C13—C14—C15	120.4 (3)	C41—C42—N1	120.0 (2)
C13—C14—H14	119.8	C39—C43—H43A	109.5
C15—C14—H14	119.8	С39—С43—Н43В	109.5
C16-C15-C14	120.5 (3)	H43A—C43—H43B	109.5
C16—C15—H15	119.7	C39—C43—H43C	109.5
C14—C15—H15	119.7	H43A—C43—H43C	109.5
C15—C16—C17	120.0 (3)	H43B—C43—H43C	109.5
C15-C16-H16	120.0	C41—C44—H44A	109.5
C17—C16—H16	120.0	C41—C44—H44B	109.5
C16—C17—C18	120.3 (3)	H44A—C44—H44B	109.5
С16—С17—Н17	119.9	C41—C44—H44C	109.5
C18—C17—H17	119.9	H44A—C44—H44C	109.5
C13—C18—C17	120.7 (3)	H44B—C44—H44C	109.5
C13—C18—H18	119.7	N2—C45—C46	178.5 (10)
C17—C18—H18	119.7	C45—C46—H46A	109.5
C20—C19—C24	116.9 (3)	C45—C46—H46B	109.5
C20—C19—P1	118.4 (2)	H46A—C46—H46B	109.5
C24—C19—P1	124.7 (2)	C45—C46—H46C	109.5
C19—C20—C21	122.1 (3)	H46A—C46—H46C	109.5
С19—С20—Н20	118.9	H46B—C46—H46C	109.5
C21—C20—H20	118.9	C42—N1—Ag1	114.06 (14)
C22—C21—C20	120.0 (3)	C42—N1—H1B	113 (2)
C22—C21—H21	120.0	Ag1—N1—H1B	107 (2)

C20—C21—H21	120.0	C42—N1—H1A	103.8 (16)
C23—C22—C21	119.0 (3)	Ag1—N1—H1A	95.6 (18)
С23—С22—Н22	120.5	H1B—N1—H1A	123 (2)
C21—C22—H22	120.5	O1—S1—O2	113.17 (12)
C22—C23—C24	120.9 (3)	O1—S1—O3	112.21 (12)
С22—С23—Н23	119.6	O2—S1—O3	113.08 (13)
С24—С23—Н23	119.6	O1—S1—C37	105.25 (11)
C19—C24—C23	121.1 (3)	O2—S1—C37	106.19 (12)
C19—C24—H24	119.5	O3—S1—C37	106.16 (11)
C23—C24—H24	119.5	C19—P1—C25	105.11 (12)
C26—C25—C30	118.4 (3)	C19—P1—C31	102.19 (12)
C26—C25—P1	117.3 (2)	C25—P1—C31	106.17 (12)
C30—C25—P1	123.9 (2)	C19—P1—Ag1	111.92 (9)
C25—C26—C27	120.7 (3)	C25—P1—Ag1	105.71 (8)
С25—С26—Н26	119.7	C31—P1—Ag1	124.26 (9)
С27—С26—Н26	119.7	C7—P2—C1	101.65 (11)
C28—C27—C26	120.3 (3)	C7—P2—C13	103.80 (11)
С28—С27—Н27	119.9	C1—P2—C13	105.01 (11)
С26—С27—Н27	119.9	C7—P2—Ag1	115.28 (8)
C27—C28—C29	119.6 (3)	C1—P2—Ag1	115.90 (8)
C27—C28—H28	120.2	C13—P2—Ag1	113.67 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····O1 ⁱ	0.895 (16)	2.23 (2)	3.026 (3)	147.8 (18)
N1—H1B…O3	0.821 (17)	2.21 (2)	2.887 (3)	139 (2)
Symmetry addres (i) $w = 2/2$ $w = 1/2$				

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2.

Fig. 1